

A PEBBLE IN A POND

110

Patricia drops a pebble into a calm pond, causing ripples to form in concentric circles on the water's surface. The radius r of the outer ripple is increasing at a constant rate of **2** feet per second.

- 1. Write the equation that relates the radius *r* of a circle to its area *A*.
- 2. Complete the table, average rates, and graph.

t (sec)	r (ft)	A (sq ft) (exact & nearest tenth)	average rate (sq ft per sec)	Area (sq ft)
	0			
	1			
	2			
	3		$\langle \rangle$	
	4			
	5			
	6		>	

At what rate is the total area A of the disturbed water changing with respect to time when the radius is at 1 ft, at 3 ft, and at 5 ft? (exact & to nearest tenth) Write units!

4. Find the rate of change of Area with respect to radius, $\frac{dA}{dr}$, at r=1, r=3, and r=5. (exact & to nearest tenth) Write units!